Evaluation of various real-time RT-PCR assays for the detection and quantitation of human norovirus.
نویسندگان
چکیده
Human noroviruses (NoVs) are the most common viruses causing acute gastroenteritis in humans. Performance characteristics of two commercial quantitative NoV RT-PCR assays, the Norovirus real-time RT-PCR Kit (AnDiaTec) and the Type I and Type II kits (Generon), and the international assay as selected by the CEN/TC/WG6/TAG4 group were evaluated for the specific detection and quantitation of 59 NoV samples, including different subtypes of NoV genogroup I and II. The results showed that the method proposed by the CEN/TC/WG6/TAG4 group was 100% specific since it was able to detect all samples tested. The commercialized kits evaluated failed to detect a vast majority of NoV GI strains. Additionally the Generon kit did not succeed to detect strains from GII.3, GII.5, GII.6, GII.7, GII.8, GII.12 and GII.17. In addition, the detection limit using the most prevalent strain, NoV GII.4, was 2.5 PCRU per reaction using both commercial kits. Despite this good sensitivity for NoV GII.4 detection it is concluded that both commercial assays are not suitable for the detection and quantitation of most NoV subtypes. Therefore the method proposed by the CEN/TC/WG6/TAG4 group is recommended for epidemiological studies and outbreaks investigations.
منابع مشابه
Improved Real-Time RT-PCR Assays of Two Colorectal Cancer Peripheral Blood mRNA Biomarkers: A Pilot Study
Background: Efficient screening for detection of colorectal cancer (CRC) at earlier stages reduces its mortality. The purpose of this study was to investigate expression of carcinoembryonic antigen (CEA) and human telomerase reverse transcriptase (hTERT) mRNA in peripheral blood of CRC patients and to present strategies for early detection screen test. Methods: Twenty seven patients in non-meta...
متن کاملEvaluation and validation of real-time reverse transcription-pcr assay using the LightCycler system for detection and quantitation of norovirus.
We developed an assay for the detection and quantitation of norovirus with the LightCycler SYBR Green-based real-time reverse transcription-PCR (real-time LC RT-PCR) and previously published primers in the capsid and the polymerase gene. One hundred thirty-two stool specimens from the Provincial Laboratory for Public Health (Microbiology), Alberta, Canada, and the Centers for Disease Control an...
متن کاملDevelopment and Evaluation of Real-Time RT-PCR Test for Quantitative and Qualitative Recognition of Current H9N2 Subtype Avian Influenza Viruses in Iran
Avian influenza H9N2 subtype viruses have had a great impact on Iranian industrial poultry production economy since introduction in the country. To approach Rapid and precise identification of this viruses as control measures in poultry industry, a real time probe base assay was developed to directly detect a specific influenza virus of H9N2 subtype -instead of general detection of Influenza A ...
متن کاملEvaluation of a new set of Real-Time PCR for Brucella detection within human and animal samples
A quantitative TaqMn Real-Time PCR assay was developed and its diagnostic value on human serum and livestock samples were evaluated. Brucella species could be distributed through communities as a biological agent. Rapid detection of biological threat agents is critical for timely therapeutic administration. Quantitative real-time PCR provides a rapid, sensitive and specific tool for molecular i...
متن کاملA Novel High-Throughput Method for Molecular Detection of Human Pathogenic Viruses Using a Nanofluidic Real-Time PCR System
Human enteric viruses are recognized as the main causes of food- and waterborne diseases worldwide. Sensitive and quantitative detection of human enteric viruses is typically achieved through quantitative RT-PCR (RT-qPCR). A nanofluidic real-time PCR system was used to develop novel high-throughput methods for qualitative molecular detection (RT-qPCR array) and quantification of human pathogeni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virological methods
دوره 167 1 شماره
صفحات -
تاریخ انتشار 2010